Suppose $\phi\in (L_p(\mathbb{R},\lambda))^*$ where $\lambda$ is the Lebesgue measure on $\mathscr{B}(\mathbb{R})$. If $\phi\neq0$, then there is $f\in L_p$ such that $\phi(f)\neq0$. Then either $\phi(f_+)>0$ or $\phi(f_-)>0$. This means that without loss of generality, we may assume that $f\geq0$ and $\phi(f)\leq1$. Define
$$F(x)=\int^x_{-\infty}f^p(t)\,dt$$
$F$ is a continuous function such that $\lim_{x\rightarrow-\infty}F(x)=0$ and $F(+\infty):=\lim_{x\rightarrow\infty}F(x)=\int f^p(t)\,dt$. Hence there is a point $x_1$ such that $F(x_1)=\frac12 F(+\infty)$. Define
\begin{align}
g_1 &=f\mathbb{1}_{(-\infty,x_1]},\qquad g_2 &=f\mathbb{1}_{(x_1,\infty)}
\end{align}
Clearly $f^p=g^p_1+g^p_2$. Since $\phi(g_1)+\phi(g_2)=\phi(f)\geq1$, then either $\phi(g_1)\geq \frac12$ or $\phi(g_2)\geq\frac12$. Choose $g\in \{g_1,g_2\}$ such that $\phi(g)\geq\frac12$, and define $f_1=2g$. Observe that $\phi(f_1)\geq1$ and
$$d(f_1,0)=2^p\int g=2^{p-1}\int f$$
Applying the same argument to $f_1$ in place of $f$, one obtains a function $f_2$ such that $\phi(f_2)\geq1$ and
$$d(f_2,0)=2^{p-1}\int f^p_1=2^{n(p-1)}\int f^p$$
Continue this way add infinitum, we obtain a sequence $(f_n:n\in\mathbb{Z}_+)$ such that
- $d(f_n,0)=2^{(p-1)n}\int f$
- $\phi(f_n)\geq1$.
Since $0<p<1$, $d(f_n,0)\xrightarrow{n\rightarrow\infty}0$. The continuity of $\phi$ then would imply that $\phi(f_n)\xrightarrow{n\rightarrow\infty}0$; this however contradicts (2). Consequently $\phi=0$.