-2

If $(6,n)=1$, prove that $n^2-1$ is divisible by $24$.

ten1o
  • 213

3 Answers3

2

Hint

$$(6,n)=1\implies$$ $ n=6k+1 $ or $n=6k-1$.

in the first case

$$n^2-1=36k^2+12k=12k(3k+1)$$

in the second

$$n^2-1=12k(3k-1).$$

If $k$ is even ....

  • https://math.stackexchange.com/questions/507451/suppose-that-p-≥-q-≥-5-are-both-prime-numbers-prove-that-24-divides-p2/507511#507511 – lab bhattacharjee Nov 19 '18 at 20:10
0

If $(6,n) = 1,$ then $n \equiv 1 \pmod 6$ or $n \equiv 5 \pmod 6,$ since $\varphi(6) = 2.$ So, we have two cases:

$n \equiv 1 \pmod 6:$ $$n \equiv 1 \pmod 6 \Rightarrow n^2 \equiv 1^2 \pmod 6 \Rightarrow n^2 - 1 \equiv 0 \pmod 6 \Rightarrow \boxed{n^2 - 1 \equiv 0 \pmod{24}}$$

$n \equiv 5 \pmod 6 \Rightarrow n \equiv -1 \pmod 6:$ $$n \equiv -1 \pmod 6 \Rightarrow n^2 \equiv (-1)^2 \pmod 6 \Rightarrow n^2 - 1 \equiv 0 \pmod 6 \Rightarrow \boxed{n^2 - 1 \equiv 0 \pmod{24}}$$

In both, we conclude that $n^2 - 1 \equiv 0 \pmod{24}.$ Therefore, $n^2 - 1$ is divisible by $24$ when $(6,n) = 1.$

0

$(6,n)=1$ $\implies$ $n$ is odd. Therefore , $$n^{2}\equiv 1 \pmod8$$ Also $(3,n)=1$ , since $(2\times3,n)=1$ Therefore by Fermat's theorem ,$$n^2\equiv 1\pmod3$$. Now you can directly combine these two congruences, since $(3,8)=1$

Therefore, $$n^2\equiv 1\pmod{24}$$