As shown in this answer, using Bernoulli's Inequality, $\left(1+\frac1n\right)^{n+1}$ is decreasing.
Thus, for $n\ge1$,
$$
\begin{align}
\frac{(n+1)^n}{n^{n+1}}
&=\frac1{n+1}\left(1+\frac1n\right)^{n+1}\\
&\le\frac4{n+1}
\end{align}
$$
Therefore, for $n\ge3$,
$$
\begin{align}
\frac{(n+1)^{\frac1{n+1}}}{n^{\frac1n}}
&=\left(\frac{(n+1)^n}{n^{n+1}}\right)^{\frac1{n(n+1)}}\\
&\le\left(\frac4{n+1}\right)^{\frac1{n(n+1)}}\\[12pt]
&\le1
\end{align}
$$
Thus, for $n\ge3$, $n^{1/n}$ is decreasing and bounded below by $1$. Therefore, $\lim\limits_{n\to\infty}n^{1/n}$ exists and is no less than $1$.
Let $\alpha=\lim\limits_{n\to\infty}n^{1/n}$, then
$$
\begin{align}
\alpha
&=\lim_{n\to\infty}n^{\frac1n}\\
&=\lim_{n\to\infty}(2n)^{\frac1{2n}}\\
&=\lim_{n\to\infty}2^{\frac1{2n}}\lim_{n\to\infty}n^{\frac1{2n}}\\[3pt]
&=1\cdot\sqrt{\alpha}
\end{align}
$$
Since $\alpha\ge1$ and $\alpha=\sqrt{\alpha}$, we get
$$
\begin{align}
\lim_{n\to\infty}n^{\frac1n}
&=\alpha\\
&=1
\end{align}
$$