Finding series sum of $$ \frac{1}{1\cdot 3}+\frac{1}{1\cdot 3\cdot 5}+\frac{1}{1\cdot 3\cdot 5\cdot 7}+\frac{1}{1\cdot 3\cdot 5\cdot 7\cdot 9}+ \cdots$$
Try: Let $\displaystyle a_{k}=\frac{1}{1\cdot 3\cdot 5\cdot 7\cdots (2k+1)}=\frac{2\cdot 4\cdot 6\cdots 2k}{(2k+1)!}$
So we have $\displaystyle a_{k}=\frac{2^k\cdot k!}{(2k+1)!}$
So our desired sum is $$\sum^{\infty}_{k=1}\frac{2^k\cdot k!}{(2k+1)!}$$
Now i am struck at that point
I did not understand how can i solve further,
Could some help me plaese , thanks