How do I evaluate $\xi(0)$ for the Riemann xi function?
I know $\xi(0) = \xi(1)$ and
- $\xi(0) = \tfrac{1}{2} \cdot 0 \cdot (-1) \cdot \Gamma(0) \cdot \zeta(0)$
- $\xi(1) = \tfrac{1}{2} \cdot 1 \cdot 0 \cdot \Gamma(\tfrac{1}{2}) \cdot \zeta(1)$
and $\zeta(0) = -\frac{1}{2}$, $\Gamma(\tfrac{1}{2}) = \sqrt{2\pi}$
but $\Gamma(0) = \infty$ and $\zeta(1) = \infty$ so I don't know how to evaluate it.
(20)
there. – m0nhawk Feb 11 '13 at 16:06