Inspired by Ramanujan's problem and solution of $\sqrt{1 + 2\sqrt{1 + 3\sqrt{1 + \ldots}}}$, I decided to attempt evaluating the infinite radical $$ \sqrt{1 + \sqrt{2 + \sqrt{4 + \sqrt{8 + \ldots}}}} $$ Taking a cue from Ramanujan's solution method, I defined a function $f(x)$ such that $$ f(x) = \sqrt{2^x + \sqrt{2^{x+1} + \sqrt{2^{x+2} + \sqrt{2^{x+3} + \ldots}}}} $$ We can see that $$\begin{align} f(0) &= \sqrt{2^0 + \sqrt{2^1 + \sqrt{2^2 + \sqrt{2^3 + \ldots}}}} \\ &= \sqrt{1 + \sqrt{2 + \sqrt{4 + \sqrt{8 + \ldots}}}} \end{align}$$ And we begin solving by $$\begin{align} f(x) &= \sqrt{2^x + \sqrt{2^{x+1} + \sqrt{2^{x+2} + \sqrt{2^{x+3} + \ldots}}}} \\ f(x)^2 &= 2^x + \sqrt{2^{x+1} + \sqrt{2^{x+2} + \sqrt{2^{x+3} + \ldots}}} \\ &= 2^x + f(x + 1) \\ f(x + 1) &= f(x)^2 - 2^x \end{align}$$ At this point I find myself stuck, as I have little experience with recurrence relations.
How would this recurrence relation be solved? Would the method extend easily to $$\begin{align} f_n(x) &= \sqrt{n^x + \sqrt{n^{x+1} + \sqrt{n^{x+2} + \sqrt{n^{x+3} + \ldots}}}} \\ f_n(x)^2 &= n^x + f_n(x + 1)~\text ? \end{align}$$