Put
\begin{equation*}
I=\int_{0}^1\dfrac{\ln(1+x-x^2)}{x}\,\mathrm{d}x = \int_{0}^1\dfrac{\ln(1+x(1-x))}{x}\mathrm{d}x.
\end{equation*}
If we change $x$ to $ 1-x $ we get
\begin{equation*}
I=\int_{0}^1\dfrac{\ln(1+x-x^2)}{1-x}\,\mathrm{d}x.
\end{equation*}
Consequently
\begin{equation*}
2I = \int_{0}^1\ln(1+x-x^2)\left(\dfrac{1}{x}+\dfrac{1}{1-x}\right)\,\mathrm{d}x.
\end{equation*}
The next step will be integration by parts.
\begin{equation*}
2I= \underbrace{\left[\ln(1+x-x^2)\ln\dfrac{x}{1-x}\right]_{0}^{1}}_{=0} -\int_{0}^1\dfrac{1-2x}{1+x-x^2}\ln\dfrac{x}{1-x}\, \mathrm{d}x
\end{equation*}
Then\begin{equation*}
I=\dfrac{1}{2}\int_{0}^1\dfrac{2x-1}{1+x-x^2}\ln\dfrac{x}{1-x}\, \mathrm{d}x.
\end{equation*}
If we substitute $ z=\dfrac{x}{1-x} $ we get
\begin{equation*}
I = \int_{0}^{\infty}\dfrac{(z-1)\ln z}{2(z+1)(z^2+3z+1)}\,\mathrm{d}z.
\end{equation*}
In order to evaluate this integral we integrate $\displaystyle \dfrac{(z-1)\log^2 z}{2(z+1)(z^2+3z+1)}$ along a keyhole contour and use residue calculus. We get that
\begin{equation*}
I = 2\ln^2\varphi
\end{equation*}
where $ \varphi = \dfrac{1+\sqrt{5}}{2}. $