Since the Sirling numbers of the 2nd kind are the bridge between powers and Falling Factorials
$$
x^{\,n} = \sum\limits_{0\, \le \,k\, \le \,n} {S_{\,n,\,k} \,x^{\,\underline {\,k\,} } } = \sum\limits_{0\, \le \,k\, \le \,n} {\left\{ \matrix{
n \cr
k \cr} \right\}x^{\,\underline {\,k\,} } }
$$
then
$$
\eqalign{
& 3^{\,n} = \sum\limits_{0\, \le \,k\, \le \,n} {\left\{ \matrix{
n \cr
k \cr} \right\}3^{\,\underline {\,k\,} } } = \left\{ \matrix{
n \cr
0 \cr} \right\}1 + \left\{ \matrix{
n \cr
1 \cr} \right\}3 + \left\{ \matrix{
n \cr
2 \cr} \right\}6 + \left\{ \matrix{
n \cr
3 \cr} \right\}6 + 0 \cr
& 2^{\,n} = \sum\limits_{0\, \le \,k\, \le \,n} {\left\{ \matrix{
n \cr
k \cr} \right\}2^{\,\underline {\,k\,} } } = \left\{ \matrix{
n \cr
0 \cr} \right\}1 + \left\{ \matrix{
n \cr
1 \cr} \right\}2 + \left\{ \matrix{
n \cr
2 \cr} \right\}2 + 0 \cr
& 1 = 1^{\,n} = \sum\limits_{0\, \le \,k\, \le \,n} {\left\{ \matrix{
n \cr
k \cr} \right\}1^{\,\underline {\,k\,} } } = \left\{ \matrix{
n \cr
0 \cr} \right\}1 + \left\{ \matrix{
n \cr
1 \cr} \right\}1 + 0 \cr
& 0^{\,n} = \left[ {0 = n} \right] = \sum\limits_{0\, \le \,k\, \le \,n} {\left\{ \matrix{
n \cr
k \cr} \right\}0^{\,\underline {\,k\,} } } = \left\{ \matrix{
n \cr
0 \cr} \right\}1 \cr}
$$
where $[P]$ denotes the Iverson bracket
$$
\left[ P \right] = \left\{ {\begin{array}{*{20}c}
1 & {P = TRUE} \\
0 & {P = FALSE} \\
\end{array} } \right.
$$
Solving this linear system gives you the answer.