1

Is there a way how to determine number of solutions in linear equation like this: $ax + by + cz = d$, where $a,b,c,x,y,z,d$ are non-negative integers and $a,b,c,d$ are known?

Alex D
  • 1,214

1 Answers1

0

Above equation shown below:

$ax + by + cz = d$ -------$(1)$

For (a, b, c, d)= (3, 2, 5, 32), equation $(1)$ has parametric solution given below:

$x=(1-v)$

$y=(-5u+9v+87)$

$z=(2u-3v-29)$

For $(u,v)$ = $(15, 0)$ we get,

$(x, y, z)$ = $(1, 12, 1)$

Sam
  • 1