I proved this problem using the theorem $\gcd(a,b)\text{lcm}(a,b)=ab$ Let $d=\gcd(a,b)$. Then $d\mid a$ and $d\mid b$. Thus, $a=dr$ and $b=ds$ for some integer $r$ and $s$. Then $$d(\text{lcm}(a,b))=ab\Rightarrow \text{lcm}(a,b)=\frac{ab}{d}\Rightarrow \text{lcm}(a,b)=\frac{d^2rs}{d}\Rightarrow \text{lcm}(a,b)=drs\Rightarrow d\mid \text{lcm}(a,b)$$ as required.
Is my alternative proof for this problem correct?