By Tonelli's theorem (i.e. switching the order of integration),
\begin{align*}
\int_{[0,\infty)}\alpha t^{\alpha-1}P[Y>t]\,dt &= \int_{[0,\infty)}\alpha t^{\alpha-1}\int_\Omega 1_{\{\omega':Y(\omega')>t\}}(\omega)\,P(d\omega)\,dt \\
&= \int_\Omega\int_{[0,\infty)} \alpha t^{\alpha-1}1_{\{\omega':Y(\omega')>t\}}(\omega)\,dt\,P(d\omega) \\
&= \int_\Omega\int_{[0,Y(\omega))}\alpha t^{\alpha-1}\,dt\,P(d\omega) \\
&= \int_\Omega Y(\omega)^\alpha\,P(d\omega) \qquad\text{fundamental theorem of calculus} \\
&= E(Y^\alpha),
\end{align*}
as desired. This method also does not require that the distribution function be continuous, merely integrable.