Solve $$\int^{2}_{-2} \frac{x^2+x^6\sin{6x}}{x^2 +4} dx$$
What I did was $$\int^{2}_{-2} \frac{x^2+x^6\sin{6x}}{x^2 +4} dx$$
$$= \int^{2}_{-2} \frac{x^2}{x^2 +4} + \frac{x^6\sin{6x}}{x^2 +4} dx$$
$$= \int^{2}_{-2} 1- \frac{4}{x^2 +4} + \frac{x^6\sin{6x}}{x^2 +4} dx$$
$$=[x]^2_{-2}-[2\arctan{\frac{x}{2}}]^2_{-2} + \int^2_{-2}\frac{x^6\sin{6x}}{x^2 +4} dx$$
I am unable to solve for $$ \int^2_{-2}\frac{x^6\sin{6x}}{x^2 +4} dx$$