You have two identical perfectly square pieces of paper. The area of each paper is 1000 units.
On each paper, draw 1000 convex, non-overlapping polygons with all polygons having the same area (exactly 1 unit). Obviously, the polygons are covering both papers completely and edges of paper also serve as edges of some polygons). Polygons may have different shapes and number of sides and the drawing on the first paper is completely different from the drawing on the second paper.
Now put the first paper on top of the second and align paper edges perfectly. Prove that it is always possible to punch a hole in all 2000 polygons with 1000 needles (each needle goes through both papers).
What have I tried?
This problem came from my son who likes to torture his father with difficult problems brought back from his math school. My first try was to steal his clever analysis book while he was sleeping and find the right page in the answer section. Alas, this problem had no solution, which basically means that it's either too simple (and I'm too stupid) or it's too difficult.
So I decided to read some theory and discovered that I had some pretty huge gaps in my math education. This problem is definitely about functions. You have a set of 1000 polygons on one side and a set of 1000 polygons on the other side. I have to prove that there is a bijective function between these two sets. Needles are just lines connecting the dots. However, all my attempts to construct such function ended miserably. I guess there has to be some clever theorem than can be applied to problems like this one but I would have to read a pretty thick book to find it.
Thanks for the hint.