Let $x = r\sin(\theta) \cos(\phi)$, $y = r\sin(\theta) \sin(\phi)$ and $z = r \cos(\theta)$, where $\theta \in [0, \pi]$ and $\phi[0, 2 \pi)$. Let
$$I = \int_{S^3} \left(x^{2n} + y^{2n} + z^{2n}\right) dx dy dz$$
Hence,
\begin{align}
I & = \int_{r=0}^1 \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} r^{2n} \left(\sin^{2n}(\theta) \cos^{2n}(\phi) + \sin^{2n}(\theta) \sin^{2n}(\phi) + \cos^{2n}(\theta)\right) r^2 \sin(\theta) d \theta d \phi dr\\
& = \dfrac1{2n+3}\int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} \left(\sin^{2n}(\theta) \cos^{2n}(\phi) + \sin^{2n}(\theta) \sin^{2n}(\phi) + \cos^{2n}(\theta)\right)\sin(\theta) d \theta d \phi
\end{align}
We have
$$\int_{\phi=0}^{2 \pi} \int_{\theta=0}^{\pi} \sin^{2n+1}(\theta) \cos^{2n}(\phi) d\theta d \phi = \left(\int_{\theta=0}^{\pi} \sin^{2n+1}(\theta) d \theta\right)\left(\int_{\phi=0}^{2\pi} \cos^{2n}(\phi) d \phi\right) \,\,\,\, (\spadesuit)$$
$$\int_{\phi=0}^{2 \pi} \int_{\theta=0}^{\pi} \sin^{2n+1}(\theta) \sin^{2n}(\phi) d\theta d \phi = \left(\int_{\theta=0}^{\pi} \sin^{2n+1}(\theta) d \theta\right)\left(\int_{\phi=0}^{2\pi} \sin^{2n}(\phi) d \phi\right) \,\,\,\, (\diamond)$$
$$\int_{\phi=0}^{2 \pi} \int_{\theta=0}^{\pi} \cos^{2n+1}(\theta) \sin(\theta) d\theta d \phi = 2 \pi \int_{\theta=0}^{\pi} \cos^{2n+1}(\theta) \sin(\theta) d\theta = 2 \pi \int_{t=-1}^{t=1} t^{2n+1} dt\\ = 2 \pi \left(\dfrac1{2n+2} + \dfrac1{2n+2} \right) = \dfrac{2 \pi}{n+1}$$
Now $$\int_{\phi=0}^{2\pi} \sin^{2n}(\phi) d \phi = \int_{\phi=0}^{2\pi} \cos^{2n}(\phi) d \phi = 4 \left(\dfrac{2n-1}{2n} \cdot \dfrac{2n-3}{2n-2} \cdot \dfrac{2n-5}{2n-4} \cdots \dfrac34 \cdot \dfrac12 \cdot \dfrac{\pi}2\right)$$
and
$$\int_{\theta=0}^{\pi} \sin^{2n+1}(\theta) d \theta = 2 \left(\dfrac{2n}{2n+1} \cdot \dfrac{2n-2}{2n-1} \cdots \dfrac45 \cdot \dfrac23 \right)$$
where the last couple of integrals are computed here.