$$\lim_{n\to\infty} \dfrac{1^p+2^p+...+n^p}{n^p}-\frac{n}{p+1}\text{ with } p\in\mathbb N$$
I don't really know how to start, I mean... I could try substituting by $\Big(\dfrac{n(n+1)}{2}\Big)^p$ but that would do me anything? Any hints?
$$\lim_{n\to\infty} \dfrac{1^p+2^p+...+n^p}{n^p}-\frac{n}{p+1}\text{ with } p\in\mathbb N$$
I don't really know how to start, I mean... I could try substituting by $\Big(\dfrac{n(n+1)}{2}\Big)^p$ but that would do me anything? Any hints?
HINT
We can use Cesàro-Stolz to
$$(p+1)\frac{1^p+2^p+...+n^p-\frac{n^{p+1}}{p+1}}{(p+1)n^p}$$
to obtain
$$\frac{a_{n+1}-a_n}{b_{n+1}-b_n}=(p+1)\frac{(n+1)^p-\frac{(n+1)^{p+1}}{p+1}+\frac{n^{p+1}}{p+1}}{(p+1)(n+1)^p-(p+1)n^p}=$$
$$\frac{(p+1)(n+1)^p-(n+1)^{p+1}+n^{p+1}}{(p+1)(n+1)^p-(p+1)n^p}$$
and then use the binomial theorem.
If you know generalized harmonic numbers $$\sum_{k=1}^n k^p=H_n^{(-p)}$$ and their asymptotics $$H_n^{(-p)}=n^p \left(\frac{n}{p+1}+\frac{1}{2}+\frac{p}{12 n}+O\left(\frac{1}{n^3}\right)\right)+\zeta (-p)$$ making $$\frac{\sum_{k=1}^n k^p }{n^p }-\frac n {p+1}=\frac{1}{2}+\frac{p}{12 n}+\cdots$$ which shows the limit and how it is approached.