1

Given that $|z|=√3$, solve the equation $$2\overline{z}+\frac3{iz}=\sqrt{15}.$$

How to solve this question without a calculator?

user10354138
  • 33,239

2 Answers2

4

HINT

Multiplying by $z$ we obtain

$$2\bar z+\frac3{iz}=\sqrt{15} \implies 2\bar zz+\frac3{iz}z\frac i i=\sqrt{15}z$$

then recall that $\bar z z=|z|^2$.

user
  • 154,566
1

WLOG $z=\sqrt3e^{it}\implies\bar z=\sqrt3e^{-it}$ where $t$ is real

$$\sqrt{15}=2\sqrt3e^{-it}+\dfrac3{i\sqrt3e^{it}}=\sqrt3(2-i)e^{-it}$$

$$\iff e^{it}=\dfrac{2-i}{\sqrt5}$$

We are done.

We can go even further.

$$e^{it}=e^{-i\arcsin\dfrac1{\sqrt5}}$$

$$\implies t=2n\pi -\arcsin\dfrac1{\sqrt5}$$ where $n$ is any integer