Given that $|z|=√3$, solve the equation $$2\overline{z}+\frac3{iz}=\sqrt{15}.$$
How to solve this question without a calculator?
Given that $|z|=√3$, solve the equation $$2\overline{z}+\frac3{iz}=\sqrt{15}.$$
How to solve this question without a calculator?
HINT
Multiplying by $z$ we obtain
$$2\bar z+\frac3{iz}=\sqrt{15} \implies 2\bar zz+\frac3{iz}z\frac i i=\sqrt{15}z$$
then recall that $\bar z z=|z|^2$.
WLOG $z=\sqrt3e^{it}\implies\bar z=\sqrt3e^{-it}$ where $t$ is real
$$\sqrt{15}=2\sqrt3e^{-it}+\dfrac3{i\sqrt3e^{it}}=\sqrt3(2-i)e^{-it}$$
$$\iff e^{it}=\dfrac{2-i}{\sqrt5}$$
We are done.
We can go even further.
$$e^{it}=e^{-i\arcsin\dfrac1{\sqrt5}}$$
$$\implies t=2n\pi -\arcsin\dfrac1{\sqrt5}$$ where $n$ is any integer