Recall that
$$\sum_{k=0}^n \dbinom{n}k = 2^n$$
Also, recall that
$$\dbinom{n}k = \dbinom{n}{n-k}$$
Hence, for odd $n$, we have
\begin{align}
2^n & = \sum_{k=0}^n \dbinom{n}k\\
& = \sum_{k=0}^{(n-1)/2} \dbinom{n}k + \sum_{k=(n+1)/2}^n \dbinom{n}k\\
& = \sum_{k=0}^{(n-1)/2} \dbinom{n}{n-k} + \sum_{k=(n+1)/2}^n \dbinom{n}k\\
& = \sum_{k=(n+1)/2}^n \dbinom{n}k + \sum_{k=(n+1)/2}^n \dbinom{n}k\\
& = 2\sum_{k=(n+1)/2}^n \dbinom{n}k
\end{align}
Hence, if $n$ is odd, we have
$$\sum_{k=(n+1)/2}^n \dbinom{n}k = 2^{n-1}$$
If $n$ is even, we have
\begin{align}
2^n & = \sum_{k=0}^n \dbinom{n}k\\
& = \sum_{k=0}^{n/2-1} \dbinom{n}k + \dbinom{n}{n/2} + \sum_{k=n/2+1}^n \dbinom{n}k\\
& = \sum_{k=0}^{n/2-1} \dbinom{n}{n-k} + \dbinom{n}{n/2} + \sum_{k=n/2+1}^n \dbinom{n}k\\
& = \sum_{k=n/2+1}^n \dbinom{n}k + \sum_{k=n/2+1}^n \dbinom{n}k + \dbinom{n}{n/2}\\
& = 2\sum_{k=n/2+1}^n \dbinom{n}k + \dbinom{n}{n/2}
\end{align}
Hence, if $n$ is even, we have
$$\sum_{k=n/2+1}^n \dbinom{n}k = 2^{n-1} - \dfrac12 \dbinom{n}{n/2}$$