I need to prove this equality,
$$\sum_{i=0}^{n} \binom{n}{i}=2^n$$
but I don't know how to start and what even to do
I need to prove this equality,
$$\sum_{i=0}^{n} \binom{n}{i}=2^n$$
but I don't know how to start and what even to do
There are at least two ways to prove that, one already shown by the binomial theorem and the other by a counting argument that is:
$$\sum_{k=0}^n \binom nk$$
$$\overbrace{2\cdot 2\cdot \ldots \cdot 2}^{n \,elements}=2^n$$
Use the binomial theorem:
$$\sum_{k=0}^n \binom{n}{k} x^k=(1+x)^n$$
putting $x = 1$,$$ \sum_{k=0}^n \binom nk=2^n$$
Think about the expansion of $(a+b)^n$
$$(a+b)^n = \binom{n}{0}a^n+\binom{n}{1}a^{n-1}b+...+\binom{n}{n-1}ab^{n-1}+\binom{n}{n}b^n $$
Now substitute $a = 1, b = 1$,
$$(1+1)^n = 2^n = \binom{n}{0}1^n+\binom{n}{1}1^{n-1}1+...+\binom{n}{n-1}1.1^{n-1}+\binom{n}{n}1^n = \sum_{k=0}^n \binom{n}{k}$$
Hence,
$$\sum_{k=0}^n \binom{n}{k} = 2^n$$ which is what you wanted.
$$\Sigma_{i=0}^n C_i^n=C_0^n+C_1^n+C_2^n+C_3^n+...+C_n^n$$
you expand using Binomial Theorem:$$(1+x)^n=C_0^n+C_1^n\cdot x+C_2^n\cdot x^2+C_3^n\cdot x^3+...+C_n^n\cdot x^n$$
On substituting $x=1$:
$$(1+1)^n=C_0^n+C_1^n\cdot 1+C_2^n\cdot 1^2+C_3^n\cdot 1^3+...+C_n^n\cdot 1^n$$
Or, $$2^n=C_0^n+C_1^n+C_2^n+C_3^n+...+C_n^n=\Sigma_{i=0}^n C_i^n$$
$$\Sigma_{i=0}^n C_i^n=2^n$$