Can we use hyperbolic function to solve the following problems ?
If $(\sqrt {{y^2-x^3}} - x)(\sqrt {{x^2} + y^3} - y) =y^3$ , prove that $x+ y = 0$
If $(\sqrt {{x^2+y^4}} - x)(\sqrt {{y^2} + x^4} - y) \le x^2 y^2$ , prove that $x + y \ge 0$
Can we use hyperbolic function to solve the following problems ?
If $(\sqrt {{y^2-x^3}} - x)(\sqrt {{x^2} + y^3} - y) =y^3$ , prove that $x+ y = 0$
If $(\sqrt {{x^2+y^4}} - x)(\sqrt {{y^2} + x^4} - y) \le x^2 y^2$ , prove that $x + y \ge 0$
The first problem.
We'll replace $x$ on $-x$ and have the following problem.
Let $x$ and $y$ be real numbers such that $$\left(\sqrt{y^2+x^3}+x\right)\left(\sqrt{x^2+y^3}-y\right)=y^3.$$ Prove that $$x=y.$$ Indeed, we need to prove that $$\left(\sqrt{y^2+x^3}+x\right)\left(\sqrt{x^2+y^3}-y\right)=\left(\sqrt{x^2+y^3}+x\right)\left(\sqrt{x^2+y^3}-x\right)$$ or $$\left(\sqrt{y^2+x^3}+x\right)\left(\sqrt{x^2+y^3}-y\right)-\left(\sqrt{x^2+y^3}+x\right)\left(\sqrt{x^2+y^3}-y\right)+$$ $$+\left(\sqrt{x^2+y^3}+x\right)\left(\sqrt{x^2+y^3}-y\right)-\left(\sqrt{x^2+y^3}+x\right)\left(\sqrt{x^2+y^3}-x\right)=0$$ or $$\left(\sqrt{y^2+x^3}-\sqrt{x^2+y^3}\right)\left(\sqrt{x^2+y^3}-y\right)+(x-y)\left(\sqrt{x^2+y^3}+x\right)=0,$$ which gives $$x=y$$ or $$\frac{(x^2+xy+y^2-x-y)\left(\sqrt{x^2+y^3}-y\right)}{\sqrt{y^2+x^3}+\sqrt{x^2+y^3}}+\sqrt{x^2+y^3}+x=0,$$ which is $$\sqrt{(x^2+y^3)(y^2+x^3)}+x\sqrt{y^2+x^3}+(x^2+xy+y^2-y)\sqrt{x^2+y^3}+x^2+xy+y^2-x^2y-xy^2=0.$$ We'll prove that $$\sqrt{(x^2+y^3)(y^2+x^3)}+x\sqrt{y^2+x^3}+(x^2+xy+y^2-y)\sqrt{x^2+y^3}+x^2+xy+y^2-x^2y-xy^2\geq0,$$ for which we consider four cases.
We see that $$\sqrt{(x^2+y^3)(y^2+x^3)}-y\sqrt{x^2+y^3}=\sqrt{x^2+y^3}\left(\sqrt{y^2+x^3}-y\right)\geq0$$ and $$(x^2+xy+y^2)\sqrt{x^2+y^3}-x^2y-xy^2\geq x(x^2+xy+y^2)-x^2y-xy^2=x^3\geq0.$$ The equality occurs for $x=y=0$ only.
After replacing $y$ on $-y$ we need to prove that $$\sqrt{(x^2-y^3)(y^2+x^3)}+x\sqrt{y^2+x^3}+(x^2-xy+y^2+y)\sqrt{x^2-y^3}+x^2-xy+y^2+x^2y-xy^2\geq0,$$ where $x$ and $y$ are non-negatives.
We see that $x^2\geq y^3$, which gives $$x\sqrt{y^2+x^3}\geq x\sqrt{y^2+y^{4.5}}\geq xy^2.$$ The equality occurs only for $x=y=0$ again.
We'll replace $x$ on $-x$ and we need to prove that: $$\sqrt{(x^2+y^3)(y^2-x^3)}-x\sqrt{y^2-x^3}+(x^2-xy+y^2-y)\sqrt{x^2+y^3}+x^2-xy+y^2-x^2y+xy^2\geq0,$$ where $x$ and $y$ are non-negatives now.
We see that $$\sqrt{(x^2+y^3)(y^2-x^3)}-x\sqrt{y^2-x^3}=\sqrt{y^2-x^3}\left(\sqrt{x^2+y^3}-x\right)\geq0.$$ Thus, it's enough to prove that $$(x^2-xy+y^2-y)\sqrt{x^2+y^3}+x^2-xy+y^2-x^2y+xy^2\geq0,$$ which is true, but my proof of this statement is still very ugly.
After replacing $x$ on $-x$ and $y$ on $-y$ we need to prove that:
$$\sqrt{(x^2-y^3)(y^2-x^3)}-x\sqrt{y^2-x^3}+(x^2-xy+y^2+y)\sqrt{x^2-y^3}+x^2-xy+y^2+x^2y+xy^2\geq0,$$ where $x$ and $y$ are non-negative, for which it's enough to prove that $$x^2-xy+y^2\geq x\sqrt{y^2-x^3}.$$ Now, by AM-GM $$x\sqrt{y^2-x^3}\leq\frac{1}{2}(x^2+y^2-x^3).$$ Id est, it's enough to prove that $$x^2-xy+y^2\geq\frac{1}{2}(x^2+y^2-x^3)$$ or $$(x-y)^2+x^3\geq0,$$ which is obvious.
The equality occurs for $x=y=0.$
The second problem.
By C-S $$x^2y^2\geq\sqrt{(x^2+y^4)(y^2+x^4)}-x\sqrt{y^2+x^4}-y\sqrt{x^2+y^4}+xy\geq$$ $$\geq |xy|+x^2y^2-x\sqrt{y^2+x^4}-y\sqrt{x^2+y^4}+xy,$$ which gives $$x\sqrt{y^2+x^4}+y\sqrt{x^2+y^4}\geq|xy|+xy.$$ Now, if $xy\geq0$ so since $$x\sqrt{y^2+x^4}+y\sqrt{x^2+y^4}\geq0,$$ we obtain $x\geq0$, $y\geq0$ and from here $x+y\geq0.$
Let $xy<0$, $x>0$ and $y<0$.
Thus, $$x\sqrt{y^2+x^4}\geq-y\sqrt{x^2+y^4}$$ or $$x^2y^2+x^6\geq x^2y^2+y^6$$ or $$x^2\geq y^2,$$ which gives $x+y\geq0$ because $x-y>0.$