This wonderful restatement was taken from Keith Conrad's notes: http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/cyclicgp.pdf?fbclid=IwAR2Tve3QPGsIEZAfj5sVhoKDdhXT2oPMsSnGoKyhZGc1NxFcynmk1_uJNRE
Theorem: $\forall a,b\Bbb{Z}$, we have $a\Bbb{Z}+b\Bbb{Z}=\gcd(a,b)\Bbb{Z}$.
Proof attempt: If $\gcd(a,b)=d$, then $a=\alpha\cdot d$ and $b=\beta\cdot d$ such that $\gcd(\alpha,\beta)=1$. Thus, $a\Bbb{Z}+b\Bbb{Z}=\alpha\cdot d\Bbb{Z}+ \beta\cdot d\Bbb{Z}=(\alpha+\beta)d\Bbb{Z}$. Since $(\alpha +\beta)\in\Bbb{Z}$ implies $(\alpha+\beta)d\in d\Bbb{Z}$. By properties of cosets, $(\alpha+\beta)d\Bbb{Z}=d\Bbb{Z}$.