$\!\bmod \color{#0a0}{z\!-\!1}\!=\!\color{#c00}{18t}\!:\,\ n\!-\!1 = \overbrace{xyz\!-\!1}^{\large\color{#0a0}{z\ \ \equiv\ \ 1}}\!\equiv xy\!-\!1\equiv (6t\!+\!1)(12t\!+\!1)-1 = \color{#c00}{18t}(4t)\!+\!\color{#c00}{18t}\equiv 0$
Thus $\,z\!-\!1\mid n\!-\!1\,$ so by $\,\color{#d0f}{\rm Fermat}\,\bmod z\!:\,\ a^{\large n-1}\equiv (\color{#e0f}{a^{\large z-1}})^{\Large \frac{n-1}{z-1}}\equiv \color{#e0f}{ 1}^{\Large \frac{n-1}{z-1}}\equiv 1$
The same holds for the primes $\,x,y\,$ (see below) so it holds true mod their lcm = product $= n$.
Remark $ $ The proof needs only that the coef's $\, 6,12,18\,$ obey $\,b\mid cd,\,c\!+\!d\,$ for all permutations.
There exists $t \in \mathbb N$ such that all of $x,y,z$ by the definition made in (1) that are composite numbers
– Adam Ledger Nov 07 '18 at 17:47