I assume you mean $$\dbinom{n}k$$
$\dbinom{n}k$ is a short hand for the number of ways in which you can choose $k$ objects from $n$ distinguishable objects. These number are called the binomial coefficients. Some textbooks and articles also denote this as $C(n,k)$.
As an example, if we have three colored balls, $\color{red}{\text{red}}$, $\color{blue}{\text{blue}}$ and $\color{brown}{\text{brown}}$, then there are three ways of choosing two balls.
\begin{matrix}
\color{red}{\text{red}} & \color{blue}{\text{blue}}\\
\color{blue}{\text{blue}} & \color{brown}{\text{brown}}\\
\color{brown}{\text{brown}} & \color{red}{\text{red}}
\end{matrix}
Note that when we say we choose, we are not interested in the order in which these are picked i.e. $\color{red}{\text{red}} \,\, \color{blue}{\text{blue}}$ and $\color{blue}{\text{blue}} \,\, \color{red}{\text{red}}$ refer to the same choice of two balls. Hence, we have $\dbinom{3}2 = 3$.
Similarly, if we have $5$ colored balls, say $\color{red}{\text{red}}$, $\color{blue}{\text{blue}}$, $\color{brown}{\text{brown}}$, $\color{orange}{\text{orange}}$, and $\color{lightgreen}{\text{green}}$, there are $10$ ways of choosing $3$ balls.
\begin{matrix}
\color{red}{\text{red}} & \color{blue}{\text{blue}} & \color{brown}{\text{brown}}\\
\color{red}{\text{red}} & \color{blue}{\text{blue}} & \color{orange}{\text{orange}}\\
\color{red}{\text{red}} & \color{blue}{\text{blue}} & \color{lightgreen}{\text{green}}\\
\color{red}{\text{red}} & \color{orange}{\text{orange}} & \color{brown}{\text{brown}}\\
\color{red}{\text{red}} & \color{orange}{\text{orange}} & \color{lightgreen}{\text{green}}\\
\color{red}{\text{red}} & \color{brown}{\text{brown}} & \color{lightgreen}{\text{green}}\\
\color{blue}{\text{blue}} & \color{brown}{\text{brown}} & \color{orange}{\text{orange}}\\
\color{blue}{\text{blue}} & \color{brown}{\text{brown}} & \color{lightgreen}{\text{green}}\\
\color{blue}{\text{blue}} & \color{orange}{\text{orange}} & \color{lightgreen}{\text{green}}\\
\color{orange}{\text{orange}} & \color{brown}{\text{brown}} & \color{lightgreen}{\text{green}}
\end{matrix}
In general,
$$\dbinom{n}r = \dfrac{n!}{r!(n-r)!}$$
where $k! = k \times (k-1) \times (k-2) \times \cdots \times 2 \times 1$.
The name binomial coefficient arises from binomial theorem. When we expand $(x+y)^n$, the coefficient of $x^k y^{n-k}$ is given by $\dbinom{n}k$ i.e.
$$(x+y)^n = \sum_{k=0}^n \dbinom{n}k x^k y^{n-k}$$
There are a lot of wonderful properties these binomial coefficients satisfy and I highly recommend you to go through the wiki-page for these properties.
\binom{k}{i}
to get MathJax to format it properly for display as $\binom{k}{i}$. – Dilip Sarwate Feb 09 '13 at 15:47