Here's a proof involving the "permutation definition of determinants."
Recall that $S_n$ denotes the group of all permutations on the set $\{1, 2, \ldots, n\}$. Let $\sigma$ denote a permutation on the given set (i.e., $\sigma \in S_n$). The sign of $\sigma$ is defined as:
$$ Sgn(\sigma)=\begin{cases}
1, & \sigma \;is \; an \; even \; permutation \\
-1, & \sigma \; is \; an \; odd \; permutation
\end{cases}
$$
where an even (odd) permutation is the one that can be written as an even (odd) number of transpositions (two cycles).
Let $A$ be a $n \times n$ matrix whose $(i, j)^{th}$ element is denoted by $a_{ij}$. Then the corresponding element in $A^T$ will be denoted by $a_{ji}$. The definition of the determinant of $A$ is as follows:
$$\det A = \sum_{\sigma \in S_n} Sgn(\sigma) \; a_{{1},\sigma(1)}\cdot a_{{2},\sigma(2)} \cdots a_{{n},\sigma(n)} $$
Similarly, we have
$$\det A^T = \sum_{\sigma \in S_n} Sgn(\sigma) \;a_{\sigma(1), {1}}\cdot a_{\sigma(2), {2}} \cdots a_{\sigma(n), {n}} $$
Observe that for all $\sigma \in S_n$, we have:
$$ a_{\sigma(1), {1}}\cdot a_{\sigma(2), {2}} \cdots a_{\sigma(n), {n}} = a_{{1},\sigma^{-1}(1)}\cdot a_{{2},\sigma^{-1}(2)} \cdots a_{{n},\sigma^{-1}(n)}$$
where $\sigma^{-1}$ is the inverse permutation of $\sigma$ in $S_n$. Further, we have that:
$$\sigma \sigma^{-1} = Id \\ \implies Sgn(\sigma) \cdot Sgn(\sigma^{-1}) = 1 \\\implies Sgn(\sigma) = Sgn(\sigma^{-1})$$
Thus, replacing $\sigma^{-1}$ by $\tau \in S_n$, we get:
$$\det A^T = \sum_{\tau \in S_n} Sgn(\tau) \; a_{{1},\tau(1)}\cdot a_{{2},\tau(2)} \cdots a_{{n},\tau(n)} \\ = \det A \; \blacksquare$$