If $$y=\frac{3}{5}+\frac{1\cdot 3}{2!}(\frac{2}{5})^2+\frac{1\cdot 3\cdot 5}{3!}(\frac{2}{5})^3+\dots$$ Then find the value 0f $y^2+2y$.
My approach is as follow $$y-\frac{1}{5}=\frac{2}{5}+\frac{1\cdot 3}{2!}(\frac{2}{5})^2+\frac{1\cdot 3\cdot 5}{3!}(\frac{2}{5})^3+\dots$$
Let $x=\frac{2}{5}$, $Y=y-\frac{1}{5}$. Then $$Y=x+\frac{1\cdot 3}{2!}(x)^2+\frac{1\cdot 3\cdot 5}{3!}(x)^3+\dots$$ I am not able to proceed from here.