Can the following claim be extended for some complex $k$. Perhaps: all $k$ with real part greater than or equal to $1$? Do the arguments below fall apart for complex $k$ for some reason?
Claim. For any real $k\ge1$ $$\lim_{x\to\infty}\frac{1}{x^{k+1}}\sum_{n=1}^x \sigma_k(n)=\frac{\zeta(k+1)}{k+1}$$
Where $\sigma_k(n)=\sum_{d|n}d^k$ and $\zeta(s)=\sum_{n=1}^\infty{\frac{1}{n^s}}$. The case for $k=1$ is shown here and the two lemmata below will extend the claim for $k>1$. I really just copied the arguments from the linked post and added in this symbol $k$.
Lemma 1. For $k>1$ we have $$\sum_{n=1}^x \frac{\sigma_k(n)}{n^k}\in\zeta(k+1)x+O(1)$$
Aside I should comment that I have some feelings about big O notation. I think we should not obfuscate the 'is' of identity and the 'is' of predication. This has caused problems in the past... We should really say $f\in O(x^3)$ and not $f=O(x^3)$. This opinion is not unique to me. And I don't want to start a discussion of notation here. But I am explaining why we see $\in$ and not the more commonly seen $=$ in my presentation of the lemma. It's because of my notation feelings.
Proof $$\begin{align} &\sum_{n=1}^x\frac{\sigma_k(n)}{n^k} \\ &=\sum_{n=1}^x \frac{1}{n^k}\sum_{d|n} (\frac{n}{d})^k \\ &=\sum_{n=1}^x \sum_{d|n} (\frac{1}{d})^k \\ &=\sum_{n=1}^x \sum_{A\le \frac{x}{d}} (\frac{1}{d})^k \\ &=\sum_{d=1}^x (\frac{1}{d})^k \sum_{A\le \frac{x}{d}}1 \\ &=\sum_{d=1}^x (\frac{1}{d})^k \bigg \lfloor \frac{x}{d} \bigg \rfloor \\ & \text{And since} \bigg \lfloor \frac{x}{d} \bigg \rfloor \in \frac{x}{d}+O(1) \text{we can substitute into the expression above to arrive at} \\ &\sum_{n=1}^x \frac{\sigma_k(n)}{n^k} \in \sum_{n=1}^x{\frac{1}{d^k}}{\bigg(\frac{x}{d}+O(1) \bigg)} \\ &\subseteq x\sum_{d=1}^x\frac{1}{d^{k+1}}+O\bigg( \sum_{d=1}^x\frac{1}{d^k} \bigg) \\ &\subseteq x\bigg(\zeta(k+1)+O\big(\frac{1}{x}\big) \bigg)+O(x^{1-k})\\ &\subseteq x\zeta(k+1)+O(1) \end{align} $$
This is justified because for $k \geq 1$ we have $O(x^{1-k}) \subseteq O(1)$. This concludes the first lemma. $\square$
Lemma 2. For $k>1$, $$\sum_{n=1}^x\sigma_{k}(n) \in \frac{\zeta(k+1)}{k+1}x^{k+1}+O(x^k)$$
Proof We will use Abel's Summation:
$$\sum_{n=1}^x a_nf(n)= A(x)f(x) +\int_1^x A(t)f'(t) dt $$ where $A(x)=\sum_{n=1}^x a_n $. We will take $a_n=\frac{\sigma_k(n)}{n^k}$ and $f(x)=x^k \implies f'(x)=kx^{k-1}$.
Substituting we have
$$\sum_{n=1}^x \sigma_k(n)= \sum_{n=1}^x \bigg(\frac{\sigma_k(n)}{n^k} \bigg){n^k}=x^k \sum_{n=1}^x \frac{\sigma_k(n)}{n^k}-k\int_1^x{t^{k-1}\sum_{n=1}^t{\frac{\sigma_k(n)}{n^k}}dt}$$
But in view of Lemma 1 we can see that this means
$$\begin{align} &\sum_{n=1}^x \sigma_k(n) \\ &\in x^k[\zeta(k+1)x+O(1)]-k\int_1^xt^{k-1}[\zeta(k+1)t+O(1)]dt\\ &\subseteq\zeta(k+1)x^{k+1}+O(1)-k\zeta(k+1) \int_1^x{t^k}dt+O\bigg(\int_1^x{t^{k-1}dt}\bigg) \\ &\subseteq \zeta(k+1)x^{k+1}+O(1)-k\zeta(k+1)\bigg[\frac{x^{k+1}-1}{k+1}\bigg]+O\bigg(\frac{x^k-1}{k}\bigg) \\ & \subseteq \zeta(k+1) \bigg[ \frac{(k+1)x^{k+1}-kx^{k+1}}{k+1} \bigg]+O(x^k) \\ & \subseteq \frac{\zeta(k+1}{k+1}x^{k+1}+O(x^k) \end{align} $$ This concludes the second lemma. $\square$
The claim above follows from these lemmata.