$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
$\ds{\sum_{k = 1}^{n}{\pars{-1}^{k - 1} \over k}{n \choose k} = H_{n}:\ {\LARGE ?}.\quad H_{z}:\ Harmonic\ Number}$.
\begin{align}
&\bbox[10px,#ffd]{\sum_{k = 1}^{n}{\pars{-1}^{k - 1} \over k}{n \choose k}} =
\sum_{k = 1}^{\infty}{\pars{-1}^{k - 1} \over k}{n \choose n - k} =
\sum_{k = 1}^{\infty}{\pars{-1}^{k - 1} \over k}\bracks{z^{n - k}}
\pars{1 + z}^{n}
\\[5mm] = &\
\bracks{z^{n - 1}}
\pars{1 + z}^{n}\sum_{k = 1}^{\infty}{\pars{-z}^{k - 1} \over k}
=
\bracks{z^{n - 1}}\pars{1 + z}^{n}\sum_{k = 1}^{\infty}
\pars{-z}^{k - 1}\int_{0}^{1}t^{k - 1}\,\dd t
\\[5mm] = &\
\bracks{z^{n - 1}}\pars{1 + z}^{n}\int_{0}^{1}
\sum_{k = 1}^{\infty} \pars{-zt}^{k - 1}\,\dd t =
\bracks{z^{n - 1}}\pars{1 + z}^{n}\int_{0}^{1}
{1 \over 1 - \pars{-zt}}\,\dd t
\\[5mm] = &\
\bracks{z^{n - 1}}\pars{1 + z}^{n}\,{\ln\pars{1 + z} \over z} =
\bracks{z^{n}}\,
\lim_{\nu\ \to\ n}\partiald{\pars{1 + z}^{\nu}}{\nu} =
\lim_{\nu\ \to\ n}\partiald{}{\nu}{\nu \choose n}
\\[5mm] = &\
{1 \over n!}\lim_{\nu\ \to\ n}\partiald{}{\nu}
\bracks{\Gamma\pars{\nu + 1} \over \Gamma\pars{\nu - n + 1}}
\\[5mm] = &\
{1 \over n!}{\Gamma\pars{n + 1}\Psi\pars{n + 1}\Gamma\pars{1} -
\Gamma\pars{1}\Psi\pars{1}\Gamma\pars{n + 1} \over \Gamma^{2}\pars{1}}
\\[5mm] = &\ \Psi\pars{n + 1} + \gamma = \bbx{H_{n}}
\end{align}