Here is a further way to attack the problem, if the problem is the following one.
We start with a population of $6$ moths in a box. The probability that each individual moth dies from one day to an other day is $1/3$. We ask for the expected mean time till no member of the population is alive.
I model this with a Markov chain with 6 states, $6, 5,4,3,2,1,0$, and the probability to pass from one state $k$ to a state $n$, $0\le n\le k$ is given by
$$
a_{kn}=
\binom kn\left(\frac 23\right)^n\left(\frac 13\right)^{k-n}\ .
$$
We want to find the expectation $H_k$ of the hitting time of $0$, when we start in $k$. We need in fact $H_k$ only for $k=6$. But we compute using a recursion formula and a linear system all values $H_k$ for $k\in\{1,2,3,4,5,6\}$.
Using the markovian property, we write the system:
$$
\begin{aligned}
H_6 &= 1 + a_{66}H_6 + a_{65}H_5 + a_{64}H_4 + a_{63}H_3 + a_{62}H_2 + a_{61}H_1\\
H_5 &= 1 + a_{55}H_5 + a_{54}H_4 + a_{53}H_3 + a_{52}H_2 + a_{51}H_1\\
H_4 &= 1 + a_{44}H_4 + a_{43}H_3 + a_{42}H_2 + a_{41}H_1\\
H_3 &= 1 + a_{33}H_3 + a_{32}H_2 + a_{31}H_1\\
H_2 &= 1 + a_{22}H_2 + a_{21}H_1\\
H_1 &= 1 + a_{11}H_1\\
\end{aligned}
$$
and we can already ask the computer for the solutions, here sage:
sage: p, q = 2/3, 1/3
sage: R = [1,2,3,4,5,6]
sage: A = matrix(QQ, 6, 6, [binomial(k,n)*p^n*q^(k-n) for k in R for n in R])
sage: v = vector(QQ, 6, [1,1,1,1,1,1])
sage: A
[ 2/3 0 0 0 0 0]
[ 4/9 4/9 0 0 0 0]
[ 2/9 4/9 8/27 0 0 0]
[ 8/81 8/27 32/81 16/81 0 0]
[ 10/243 40/243 80/243 80/243 32/243 0]
[ 4/243 20/243 160/729 80/243 64/243 64/729]
sage: ( identity_matrix(6) - A ).inverse() * v
(3, 21/5, 477/95, 6963/1235, 319551/52117, 11934063/1824095)
and the last entry above is the needed value
$$
H_6=\frac{11934063}{1824095}
\approx
6.5424569444025\dots\ .
$$
We may stop above. Here is one more observation on the matrix $A$ used above.
It is natural to extend it by the $0$.th column, so we allow also $k,n$ to take the value zero in the above definition of $a_{k,n}$. Then one has for the extended $A$ the
diagonalization:
$$A=SDS^{-1}\ ,$$
where $D$ is the diagonal matrix with entries $1,p,p^2,p^3,\dots$ (here $p=2/3$), and $S$ is the base change matrix with entries given by the binomial coefficients.
$$
D=
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &\dots\\
0 & \frac{2}{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 &\dots\\
0 & 0 & \frac{4}{9} & 0 & 0 & 0 & 0 & 0 & 0 &\dots\\
0 & 0 & 0 & \frac{8}{27} & 0 & 0 & 0 & 0 & 0 &\dots\\
0 & 0 & 0 & 0 & \frac{16}{81} & 0 & 0 & 0 & 0 &\dots\\
0 & 0 & 0 & 0 & 0 & \frac{32}{243} & 0 & 0 & 0 &\dots\\
0 & 0 & 0 & 0 & 0 & 0 & \frac{64}{729} & 0 & 0 &\dots\\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{128}{2187} & 0 &\dots\\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{256}{6561}&\dots\\
\vdots &\vdots &\vdots &\vdots &\vdots &\vdots &\vdots &\vdots &\vdots &\ddots
\end{bmatrix}\ ,
$$
and
$$
S=
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \dots\\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \ddots \\
1 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \ddots\\
1 & 3 & 3 & 1 & 0 & 0 & 0 & 0 & 0 & \ddots\\
1 & 4 & 6 & 4 & 1 & 0 & 0 & 0 & 0 & \ddots\\
1 & 5 & 10 & 10 & 5 & 1 & 0 & 0 & 0 & \ddots\\
1 & 6 & 15 & 20 & 15 & 6 & 1 & 0 & 0 & \ddots\\
1 & 7 & 21 & 35 & 35 & 21 & 7 & 1 & 0 & \ddots\\
1 & 8 & 28 & 56 & 70 & 56 & 28 & 8 & 1& \ddots\\
\ddots& \ddots& \ddots& \ddots& \ddots& \ddots& \ddots& \ddots& \ddots & \ddots
\end{bmatrix}
\ .
$$
Knowing how to diagonalize (the extended) $A$, and the base change matrix $S$, with inverse
$$
S^{-1}
=
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \ddots\\
-1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &\ddots \\
1 & -2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 &\ddots\\
-1 & 3 & -3 & 1 & 0 & 0 & 0 & 0 & 0 &\ddots\\
1 & -4 & 6 & -4 & 1 & 0 & 0 & 0 & 0 &\ddots\\
-1 & 5 & -10 & 10 & -5 & 1 & 0 & 0 & 0 &\ddots\\
1 & -6 & 15 & -20 & 15 & -6 & 1 & 0 & 0 &\ddots\\
-1 & 7 & -21 & 35 & -35 & 21 & -7 & 1 & 0 &\ddots\\
1 & -8 & 28 & -56 & 70 & -56 & 28 & -8 & 1&\ddots\\
\ddots&\ddots&\ddots&\ddots&\ddots&\ddots&\ddots&\ddots&\ddots&\ddots
\end{bmatrix}
$$
lets us solve the system in similar cases as a human...
(Diagonally, we have in $S$ and in its inverse the (signed) binomial coefficients.)
(I started to type this some days ago, but was not convinced this is a good way to solve. Well, in this second i decided to submit, but next second...)