I am dealing with the test of the OBM (Brasilian Math Olympiad), University level, 2016, phase 2.
I hope someone can help me to discuss this test. Thanks for any help.
The question 2 says:
Find all functions $f:\mathbb{R}\rightarrow \mathbb{R}$ such that
$f(x^2+y^2f(x))=xf(y)^2-f(x)^2$
for all $x,y\in\mathbb{R}$.
My attempt:
Note that $f(0)\in\{0,-1\}$. In fact, by taking $x=y=0$, we have $f(0)=-f(0)^2$.
Case 1 $f(0)=0$
By taking $y=0$, we have
$f(x^2)=-f(x)^2\forall x\in\mathbb{R}$
Particularly, $f(1)=-f(1)^2$, so $f(1)\in\{0,-1\}$.
(a) f(1)=0
By taking $x=1$, we have $f(1)=f(y)^2\forall y\in\mathbb{R}$.
So, $f\equiv 0$. Is trivial that it respects the statement.
(b) f(1)=-1
By taking $x=1$, we have $f(1-y^2)=f(y)^2-1=-f(y^2)-1\forall y\in\mathbb{R}$. So, to $t\leq 0$, we have $f(1-x)=-f(x)-1$.
By taking $y=1$, we have $f(x^2+f(x))=x-f(x)^2=x+f(x^2) \forall x\in\mathbb{R}$.
I could not finish this subcase
Case 2 $f(0)=-1$
By taking $x=0$,
$f(-y^2)=-1\forall y\in\mathbb{R}$
So, $f(t)=-1\forall t\leq0$.
By taking $y=0$,
$f(x^2)=-x-f(x)^2 \forall x\in\mathbb{R}$
So, $f(t)=-\sqrt{t}-1\forall t\geq0$.
But this function does not is correct. For instance, to $x=y=1$, $f(x^2+y^2f(x))=f(1+1(-2))=f(-1)=-1$, but $xf(y)^2-f(x)^2=1(-2)^2-(-2)=6\not=-1$.