1

I want to show that for a non-negative random variable $X: \Omega \to [0,+\infty)$ in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$:

$\mathbb{E}[X]=\int_{0}^{\infty}\mathbb{P}(X\geq t)dt$

I know that I can replace $\mathbb{P}(X\geq t)$ with $\mathbb{P}(X > t)$ and then I'd have:

$\int_{0}^{\infty} (1-F_{X}(x))dx = \int_{0}^{\infty}\int_{x}^{\infty} f_{X}(y)dydx = \int_{0}^{\infty}\int_{0}^{y}dx\: f_{X}(y)dy = \int_{0}^{\infty}yf_{X}(y)dy = \mathbb{E}[X]$

And I know that both sides of the equation can be $\infty$. I established the relation for X being an indicator function, and now I want to establish it for X as a simple non-negative function and then for non-negative measurable functions.

I'd appreciate any help.

1 Answers1

1

Given the comment of @GnuSupporter, I will solve it for a continuous random variable $X$.

Certainly, if $X$ is a non-negative function the statement follows from linearity of expectation and from the fact that for disjoint $A_1 \dots A_n$ you have that $$\mathbb{P}(\sum_{i=1}^nc_i1_{A_i}\geq t)=\sum_{i=1}^n\mathbb{P}(c_i1_{A_i}\geq t)$$

For the rest, you have that there is an increasing sequence of simple positive random variables $X_n$ s.t. $\lim_{n \rightarrow \infty}X_n=X$ by the Structure Theorem.

We now use MCT repeatedly:

$$\mathbb{E}[X]=\mathbb{E}[\lim_{n \rightarrow \infty}X_n]=\lim_{n \rightarrow \infty}\mathbb{E}[X]=\lim_{n \rightarrow \infty }\int_0^{\infty}\mathbb{P}(X_n\geq t)dt=\int_0^{\infty}\lim_{n\rightarrow \infty}\mathbb{P}(X_n\geq t)dt$$

We've used the MCT to get the first and fourth equalities, noting that for $X_n\geq X_{n-1}$ we have $$\mathbb{P}(X_n \geq t) \geq \mathbb{P}(X_{n-1}\geq t)$$

Finally, a standard result in probability gives that for $(A_n)_{n \geq 1}$ increasing events we get $$\lim_{n \rightarrow \infty}\mathbb{P}(A_n)=\mathbb{P}(\lim_{n \rightarrow \infty}A_n)$$

Take $A_n=\{X_n\geq t\}$ to obtain the result

asdf
  • 4,587