2

Let $\Omega\subset \mathbb R^n$ be open, connected and $\Omega=\Omega_1 \cup \Omega_2$ where $\Omega_1\cap \Omega_2=\emptyset$, $\mu(\Omega_1)>0,\mu(\Omega_2)>0.$ Then show that there exists $\phi\in C_c^{\infty}(\Omega)$ such that $\displaystyle \int_{\Omega_1}D\phi(x)dx\in S^{n-1}.$

There is one theorem in Sobolev Space called :

Let $\Omega\subset \mathbb R^n$ be an open set and $K\subset \Omega$ be a compact set. Then there exists $\phi\in C_c^{\infty}(\Omega)$ such that

  1. $0\leq \phi(x)\leq 1$ for all $x\in \Omega$,
  2. $\phi(x)=1$ on $K$.

Here $C_c^{\infty}(\Omega)$ is the set of all $C^{\infty}$ functions in $\Omega$ which are compactly supported.

$S^{n-1}=\{x\in \mathbb R^n:||x||_2=1\}$

Any help is appreciated . Thank you

Mini_me
  • 2,165

0 Answers0