Prove that $\gcd(2^a-1,2^b-1)=2^{\gcd(a,b)}-1$
Hints-
$1$. Use Euclids Lemma
$2$. $2^a=2^{a\%c}\mod (2^c)-1$
$3$. If $a=q\cdot b+c$ then $2^a=(2^c)^q\cdot 2^r$
Prove that $\gcd(2^a-1,2^b-1)=2^{\gcd(a,b)}-1$
Hints-
$1$. Use Euclids Lemma
$2$. $2^a=2^{a\%c}\mod (2^c)-1$
$3$. If $a=q\cdot b+c$ then $2^a=(2^c)^q\cdot 2^r$