We know that $\sum_{k=1}^{\infty}\frac{1}{k}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots$ diverges.
But for any natural number $n$, $\sum_{k=1}^{n}\frac{1}{k}$ is finite.
The question is; how to compute $\sum_{k=1}^{n}\frac{1}{k}$ for sum natural number $n$, explicitly?
Say $n=50$, how to compute $\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{49}+\frac{1}{50}$, explicitly?