I want to show that if $m \geq 1, n \geq 1$ and $gcd(m,n)=1$, then $F_m F_n \mid F_{mn}$.
$F_n$ is the $n$-th Fibonacci number.
I have tried the following so far:
$$F_{mn}=F_{mn-1}+F_{mn-2}=2F_{mn-2}+F_{mn-3}=2(F_{mn-3}+F_{mn-4})+F_{mn-3}\\=3F_{mn-3}+2F_{mn-4}=\dots=\lambda F_{mn-\lambda}+(\lambda-1)F_{mn-(\lambda+1)}$$
Is it right so far? How can we continue in order to get the desired result?