$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\bbox[10px,#ffd]{\int{\ln\pars{1 + t} \over 1 + t^{2}}\,\dd t} =
\int{\ln\pars{1 + t} \over \pars{t + \ic}\pars{t - \ic}}\,\dd t \\[5mm] = &\
{1 \over 2}\int\ln\pars{1 + t}\pars{{1 \over t - \ic} + {1 \over t + \ic}}\,\dd t
\\[5mm] = &\
{1 \over 2}\sum_{\sigma = \pm 1}\int{\ln\pars{1 + t} \over t - \sigma\ic}\,\dd t
\,\,\,\stackrel{x\ \equiv\ t + 1}{=}\,\,\,
-\,{1 \over 2}\sum_{\sigma = \pm 1}\int{\ln\pars{x} \over
1 + \sigma\ic - x}\,\dd x
\\[5mm] \stackrel{y\ \equiv\ x/\pars{1 + \sigma\ic}}{=}\,\,\,&
-\,{1 \over 2}\sum_{\sigma = \pm 1}\int{\ln\pars{\bracks{1 + \sigma\ic}y} \over
1 - y}\,\dd y
\\[5mm] = &\
-\,{1 \over 2}\sum_{\sigma = \pm 1}\bracks{%
-\ln\pars{1 - y}\ln\pars{\bracks{1 + \sigma\ic}y} + \int{\ln\pars{1 - y} \over y}\,\dd y}
\\[5mm] = &\
{1 \over 2}\sum_{\sigma = \pm 1}\bracks{%
\ln\pars{1 - y}\ln\pars{\bracks{1 + \sigma\ic}y} + \mrm{Li}_{2}\pars{y}}
\\[5mm] = &\
{1 \over 2}\sum_{\sigma = \pm 1}\bracks{%
\ln\pars{1 - {x \over 1 + \sigma\ic}}\ln\pars{x} +
\mrm{Li}_{2}\pars{x \over 1 + \sigma\ic}}
\\[5mm] = &\
{1 \over 2}\sum_{\sigma = \pm 1}\bracks{%
\ln\pars{1 - {t + 1 \over 1 + \sigma\ic}}\ln\pars{t + 1} +
\mrm{Li}_{2}\pars{t + 1 \over 1 + \sigma\ic}}
\\[5mm] = &\
\bbx{{1 \over 2}\,\ln\pars{t + 1}\sum_{\sigma = \pm 1}
\ln\pars{1 - {t + 1 \over 1 + \sigma\ic}} +
{1 \over 2}\sum_{\sigma = \pm 1}\mrm{Li}_{2}\pars{t + 1 \over 1 + \sigma\ic}}
\end{align}