If $2^{100} \equiv 1$ (mod $125$) and $2^{100} \equiv 0$ (mod $8$) $\Rightarrow$ $2^{100} \equiv 376$ (mod $1000$).
- $2^{100} = n_1\cdot 125 + r_1$ and $1 = 0\cdot 125 + 1$ $\Rightarrow$ $r = 1$
- $\frac{2^{100} - 1}{125} = n_1 - 0$
- $376 = 0 \cdot 1000 + 376$ and $2^{100} = m_1\cdot 1000 + r_2$ $\Rightarrow$ $r_2 = 376$
- $\frac{2^{100} - 376}{1000} = m_1 - 0$ $\Rightarrow$ $\frac{2^{100} - (3\cdot 125 + 1)}{8 \cdot 125} = \frac{(2^{100} - 1) - 3\cdot 125 }{8 \cdot 125} = \frac{125\cdot n_1 - 0 - 3\cdot 125}{8 \cdot 125} = \frac{n_1 - 3}{8} = m_1$
- $2^{100} = m_1 \cdot 1000 - 375$
Where is the mistake?