Solution
Notice that $$(\forall x \in \mathbb{R})~~e^x=1+x+\frac{x^2}{2!}+\cdots+\frac{x^n}{n!}+\cdots.$$ Let $x=n$ where $n\in \mathbb{N_+}$. Then we obtain $$e^n=1+n+\frac{n^2}{2!}+\cdots+\frac{n^n}{n!}+\cdots>\frac{n^n}{n!}.$$ Thus, we obtain $$e>\frac{n}{\sqrt[n]{n!}}.\tag1$$ Moreover, we can find that, for $k=0,1,\cdots,n-1.$ $$\frac{n^k}{k!}< \frac{n^n}{n!}.$$ Thus \begin{align*} e^n&=1+n+\frac{n^2}{2!}+\cdots+\frac{n^n}{n!}+\frac{n^n}{n!}\cdot\left[\frac{n}{n+1}+\frac{n^2}{(n+1)(n+2)}+\cdots\right]\\ &< (n+1)\cdot\frac{n^n}{n!}+\frac{n^n}{n!}\cdot\left[\frac{n}{n+1}+\frac{n^2}{(n+1)^2}+\cdots\right]\\ &=(n+1)\cdot\frac{n^n}{n!}+\frac{n^n}{n!}\cdot n\\ &=(2n+1)\cdot \frac{n^n}{n!}, \end{align*} which shows that $$\frac{n}{\sqrt[n]{n!}}>\frac{e}{\sqrt[n]{2n+1}}.\tag2$$ Combining $(1)$ and $(2)$, we have $$e>\frac{n}{\sqrt[n]{n!}}>\frac{e}{\sqrt[n]{2n+1}}\to e(n \to \infty).$$ By the squeeze theorem, $$\lim_{n \to \infty}\frac{n}{\sqrt[n]{n!}}=e.$$
Please correct me if I'm wrong. Many thanks.