Suppose $$\mathcal{L} =\mathcal{L}(x,y,u,u_x,u_y) = \frac{1}{2} \lVert \nabla u \rVert^2$$
and I want to find $u$ such that the functional
$$ E(u)=\int_{\Omega} \mathcal{L}dxdy $$
is minimized, computing the variational derivative leads me to
$$ \frac{\delta E}{\delta u} = \int_{\partial \Omega}(u_y - u_x)h d\gamma -\int_{\Omega} \Delta u h dxdy $$
therefore the $u$ function I'm looking for is given by
$$ \left\{ \begin{array}{ll} \left(\frac{\partial}{\partial y} - \frac{\partial}{\partial x}\right) u = 0 & u (x,y) \in \partial \Omega \\ \Delta u = 0 & (x,y) \in \text{Int}(\Omega) \end{array} \right. $$
Though the question might be silly, I wonder how the operator
$$ A =\frac{\partial}{\partial y} - \frac{\partial}{\partial x} $$
might be discretized, my attempt would be using be applying the Sobel masks in pixels at $\partial \Omega$ and adding the results, would this be correct? Or is that operator something know that I'm missing? I thought at the beginning it was the divergence operator, but I was wrong since $u$ is a real valued function.
Update (Full derivation of the integral)
We have $$ \frac{E(u + \alpha h) - E(u)}{\alpha} = \frac{1}{\alpha}\int_{\Omega} \mathcal{L}(x,y,u+\alpha h,u_x+\alpha h_x, u_y+\alpha h_y) -\mathcal{L}(x,y,u,u_x, u_y)dxdy = \\ \int_{\Omega} \frac{\partial \mathcal{L}}{\partial u}h + \frac{\partial \mathcal{L}}{\partial u_x}h_x + \frac{\partial \mathcal{L}}{\partial u_y}h_y dxdy = \int_{\Omega} \frac{\partial \mathcal{L}}{\partial u}h dxdy + \int_{\Omega}\frac{\partial \mathcal{L}}{\partial u_x}h_x + \frac{\partial \mathcal{L}}{\partial u_y}h_y dxdy. $$
Consider the integral
$$ \int_{\Omega}\frac{\partial \mathcal{L}}{\partial u_x}h_x + \frac{\partial \mathcal{L}}{\partial u_y}h_y dxdy $$
observing
$$ \frac{\partial \mathcal{L}}{\partial u_x}h_x = \frac{d}{dx}\left(\frac{\partial \mathcal{L}}{\partial u_x}h\right) - \frac{d}{dx} \frac{\partial \mathcal{L}}{\partial u_x} h $$
and likewise for $\frac{\partial \mathcal{L}}{\partial u_y}h_y$ we have $$ \int_{\Omega}\frac{\partial \mathcal{L}}{\partial u_x}h_x + \frac{\partial \mathcal{L}}{\partial u_y}h_y dxdy = \int_{\partial \Omega} \left(\frac{\partial \mathcal{L}}{\partial u_y} - \frac{\partial \mathcal{L}}{\partial u_x}\right)h d\gamma - \int_{\Omega} \left( \frac{d}{dx} \frac{\partial \mathcal{L}}{\partial u_x} + \frac{d}{dy} \frac{\partial \mathcal{L}}{\partial u_y}\right)h dxdy $$
Taking the limit for $\alpha \to 0$ yields
$$ \frac{\delta E}{\delta u} = \int_{\Omega} \left(\frac{\partial \mathcal{L}}{\partial u} - \frac{d}{dx} \frac{\partial \mathcal{L}}{\partial u_x} - \frac{d}{dy} \frac{\partial \mathcal{L}}{\partial u_y}\right)h dxdy + \int_{\partial \Omega} \left(\frac{\partial \mathcal{L}}{\partial u_y} - \frac{\partial \mathcal{L}}{\partial u_x}\right)h d\gamma $$
And explicit computation of the partial derivatives of $\mathcal{L}$ yields to expression above.