Using the series $\displaystyle \sum_{k=0}^{\infty}\frac{(-1)^{k}}{k!}=\frac{1}{e}$, evaluate the first $3$ decimal digits of $1/e$.
Attempt. In alternating series $\displaystyle \sum_{k=0}^{\infty}(-1)^{k+1}\alpha_n$, where $\alpha_n \searrow 0$, if $\alpha$ is the sum of the series then $$|s_n-\alpha|\leq \alpha_{n+1}.$$ So, in our case we need to find $n$ such that $|s_n-1/e|<0.001$, where $\displaystyle s_n=\sum_{k=0}^{n-1}\frac{(-1)^{k}}{k!}$ and it is enough to find $n$ such that $\dfrac{1}{n!}<0.001$, so $n\geq 7$. Therefore:
$$s_7=\sum_{k=0}^{6}\frac{(-1)^{k}}{k!}=0.36805\ldots$$
so I would expect $\dfrac{1}{e}=0.368\ldots$. But: $\dfrac{1}{e}=0.36787944\ldots$.
Where am I missing something?
Thanks in advance.