Solve the following limit: $$ \lim\limits_{n\to\infty}\prod\limits_{1\leq k\leq n}\left( 1+\frac{k}{n} \right)^{\frac{1}{k}} .$$
Here is what I do:
Take the logarithm: \begin{align} \lim\limits_{n\to\infty}\log \prod\limits_{1\leq k\leq n}\left( 1+\frac{k}{n} \right)^{\frac{1}{k}}&=\lim\limits_{n\to\infty}\sum_{k=1}^{n}\frac{\log (1+\frac{k}{n})}{\frac{k}{n}}\frac{1}{n}\\ &=\int_{0}^{1}\frac{\log (1+x)}{x}dx \end{align}
Then I am stuck. How to integrate $ \int_{0}^{1}\frac{\log (1+x)}{x}dx $?
The question is from: (8) of https://math.uchicago.edu/~min/GRE/files/week4.pdf
Edit: Different approaches are very welcome! The hint says 'estimate from above and below'. Maybe someone can provide a solution without integration?