\begin{align}
E[X] &= \int_{x = 0}^{\infty} f_X(x) \cdot x \,\mathrm{d}x \\
&= \int_{x = 0}^{\infty} f_X(x) \cdot \left( \int_{t = 0}^x 1 \,\mathrm{d}t \right) \,\mathrm{d}x \\
&= \iint_{\Omega} f_X(x) \,\mathrm{d}x \,\mathrm{d}t \tag*{Eq.(1)}
\end{align}
where $\Omega$ is the lower triangular region (below the diagonal $t = x$) in $x$-$t$ plane with $x$-axis being horizontal and $t$-axis being vertical.
Eq.$(1)$ above is doing the integration "vertical first". One can do this horizontal first such that
\begin{align}
E[X] &= \iint_{\Omega} f_X(x) \,\mathrm{d}x \,\mathrm{d}t \\
&= \int_{t = 0}^{\infty} \left( \int_{x = t}^{\infty} f_X(x) \,\mathrm{d}x \right) \,\mathrm{d}t \\
&= \int_{t = 0}^{\infty} P(X \geq t) \,\mathrm{d}t
\end{align}
When you proved the discrete case earlier, you should have noticed the pattern that is often seen in triangular numbers. That pattern was supposed to be the hint for the continuous case, not splitting the reals into integers and non-integers.
For the discrete case, denote $P_k \equiv P( X = k )$, then
\begin{align}
E[X] &= \sum_{k = 1}^{\infty} k\cdot P_k \\
&= P_1 + P_2 + P_3 + P_4 + P_5 + \cdots + P_k + P_{k+1} + \cdots \\
&\hphantom{ {}={} } \hphantom{P_1} {}+ P_2 + P_3 + P_4 + P_5 + \cdots + P_k + P_{k+1} + \cdots \\
&\hphantom{ {}={} } \hphantom{P_1 + P_2 } {}+ P_3 + P_4 + P_5 + \cdots + P_k + P_{k+1} + \cdots \\
&\hphantom{ {}={} } \hphantom{P_1 + P_2 + P_3 } {}+ P_4 + P_5 + \cdots + P_k + P_{k+1} + \cdots \\
&\hspace{96pt}\vdots \\
&\text{at the $k$-th row} \hspace{69pt} {} + P_k + P_{k+1} + \cdots \\
&\hspace{139pt} {}+ P_{k+1} + \cdots \\
&\hspace{160pt} \vdots
\end{align}
Where each of the original summand $k \cdot P_k$ is now "aligned vertically" so that when looking at each row horizontally one gets $P( X \geq k)$.
This mental picture is what you are supposed to have (and not just the algebraic manipulation).