2

What is the limit of: $$\lim_\limits{x\to0}{\tan{x}-\sin{x}\over x^3}$$

So what I tried is:

$$\lim_\limits{x\to0}{{\sin{x}\over\cos{x}}-\sin{x}\over x^3}=\lim_\limits{x\to0}{{\sin{x}}({1\over\cos x}-1)\over x\cdot x^2}$$

From here, using the rule $\lim_\limits{x\to0}{\sin{x}\over{x}}=1$ it remains to evaluate $$\lim_\limits{x\to0}{{1\over\cos{x}}-1\over x^2}.$$ I tried changing it a lot of ways but it always gets messier so I'm not sure what to apply here to complete the question.

Robert Z
  • 145,942
Aleksa
  • 861
  • Do you know Taylor polynomial ? If yes, find Taylor expansion of degree 3 of $\tan(x)-\sin(x)$. If no, apply l'Hospital rule 3 times. – Surb Oct 21 '18 at 15:24
  • And for further options, see this question and the ones linked there: https://math.stackexchange.com/questions/157903/evaluation-of-lim-limits-x-rightarrow0-frac-tanx-xx3 – Hans Lundmark Oct 21 '18 at 15:25
  • Apply L'Hospital's rule – Anik Bhowmick Oct 21 '18 at 15:29

7 Answers7

5

From your last line, $${{1\over\cos{x}}-1\over x^2}={1-\cos^2(x)\over \cos(x)(1+\cos(x))x^2}={1\over \cos(x)(1+\cos(x))}\cdot \left(\frac{\sin(x)}{x}\right)^2.$$ Can you take it from here?

Robert Z
  • 145,942
4

$$\frac{\tan x-\sin x}{x^3}=\frac{\tan x}{x}\frac{1-\cos x}{x^2}=\frac{\tan x}{x}\frac{2\sin^2\frac{x}{2}}{x^2}=\frac{1}{2}\frac{\tan x}{x}\Bigg(\frac{\sin \frac{x}{2}}{\frac{x}{2}}\Bigg)^2\to\frac{1}{2}$$

J.G.
  • 115,835
2

$$\lim_{x \to 0 } \frac{\sec x - 1}{x^2} = \lim_{x \to 0 } \frac{\sec x \tan x}{2x}= \lim_{x \to 0}\frac{\sec x}{2}= \frac12$$

Siong Thye Goh
  • 149,520
  • 20
  • 88
  • 149
1

$$\frac{\tan x - \sin x}{x^3} = \frac{\sin x - \sin x\cos x}{x^3\cos x} = \frac{\sin x}x \cdot\frac{1-\cos x}{x^2}\cdot\frac 1{\cos x}\to 1\cdot \frac 12\cdot \frac 1{\cos 0} = \frac 12$$

Ennar
  • 23,082
1

Observe that, $x\to 0$ then $\cos{x}\to 1$ so, $\big(\frac{1}{\cos{x}}-1\big)\to 0$ and also $x^2\to 0$. Hence we can use L'Hospital's rule. $$\lim_{x \to 0 } \frac{(1/\cos x) - 1}{x^2} = \lim_{x \to 0 } \frac{\sec x - 1}{x^2}=\lim_{x \to 0 } \frac{\sec x \tan x}{2x}= \lim_{x \to 0}\frac{\sec x}{2}= \frac12$$

tarit goswami
  • 3,009
  • 1
  • 12
  • 27
0
  • $\lim_{x\to 0}\frac{1-\cos x}{x^2}=\frac12$
  • $\lim_{x\to 0}\frac{\sin x}{x}=1$

$$\lim_{x\to 0}\frac{\tan x - \sin x}{x^3}\space=\space\lim_{x\to 0}\frac{\sin x}{x^3 \cos x}\space-\space\lim_{x\to 0}\frac{\sin x \cos x}{x^3 \cos x}\space=\space\ \Biggl(\lim_{x\to 0}\frac{1}{\cos x}\Biggl)\Biggl(\lim_{x\to 0}\frac{\sin x }{x}\Biggl)\Biggl(\lim_{x\to 0}\frac{1}{x^2}\Biggl)-\Biggl(\lim_{x\to 0}\frac{1}{\cos x}\Biggl)\Biggl(\lim_{x\to 0}\frac{\sin x}{x}\Biggl)\Biggl(\lim_{x\to 0}\frac{\cos x}{x^2}\Biggl)\space=\space\Biggl(\lim_{x\to 0}\frac{1}{\cos x}\Biggl)\Biggl(\lim_{x\to 0}\frac{\sin x}{x}\Biggl)\Biggl[\lim_{x\to 0}\frac{1}{x^2}\space-\space\lim_{x\to 0}\frac{\cos x}{x^2}\Biggl]\space=\space\lim_{x\to 0}\frac{1-\cos x}{x^2}\space=\space \frac12$$

0

As $x \to 0$

$$\frac{\tan x(1-\cos x)}{x^3} \sim \frac{x^3}{2x^3}=\frac{1}{2}$$

A S D
  • 356