Yes. Uniform convergence allows you to pass the limit inside the sum and inside the integral. The Theorem goes as follows:
Let $X\subseteq \mathbb{R}$, $a\in \bar{\mathbb{R}}$ be a limit point of $X$ (*), $f_k:X\to \mathbb{R}$. If the limit $\lim_{x\to a}f_k(x)$ exists and $\sum_{k=0}^{\infty}f_k$ converges uniformly then
\begin{equation}\lim_{x\to a}\sum_{k=0}^{\infty}f_k(x)=\sum_{k=0}^{\infty}\lim_{x\to a}f_k(x)\end{equation}
So in your case you need to show $\lim_{n\to \infty}(-1)^{k+1}\frac{n}{k+k^2n}$ for fixed $k$ exists (simple) and $\sum_{k=0}^{\infty}(-1)^{k+1}\frac{n}{k+k^2n}$ converges uniformly for $n$. I suggest the Weierstrass M test:
If $\forall k\in \mathbb{N}\; \sup_{x\in X}\left|f_k(x)\right|\le M_k$ and the series $\sum_{k=0}^{\infty}M_k$ converges then the series $\sum_{k=0}^{\infty}f_k$ converges uniformly.
In our case, for $x\ge 0$ and $k\ge 1$,
$$\left|f_k(x)\right|=\frac{x}{k+k^2x}\le \frac1{k^2}:=M_k$$
and so...
(*) $a$ may very well be infinite