$\sum_{i=1}^n i2^i$
How can we derive a function out of this summation. I saw similar type of equation before but the $\lvert r\rvert$ in $ir^i$ is < 1. How can we create a function when $\lvert r\rvert > 1$ (in this case $2$)
$\sum_{i=1}^n i2^i$
How can we derive a function out of this summation. I saw similar type of equation before but the $\lvert r\rvert$ in $ir^i$ is < 1. How can we create a function when $\lvert r\rvert > 1$ (in this case $2$)
Using differentiation. From the well known identity $$1+x+x^2+x^3+...+x^{n-1}+x^{n}=\frac{x^{n+1}-1}{x-1} \tag{1}$$ we have $$\sum\limits_{i=1}^{n}x^i=\frac{x^{n+1}-1}{x-1}-1=\frac{x^{n+1}-x}{x-1}$$ Now take the derivative $$\left(\sum\limits_{i=1}^{n}x^i\right)^{'}=\left(\frac{x^{n+1}-x}{x-1}\right)^{'}$$ which is $$\sum\limits_{i=1}^{n}ix^{i-1}=\frac{n x^{n+1}-(1+n)x^n+1}{(x-1)^2}$$ and multiply both sides by $x$ $$\sum\limits_{i=1}^{n}ix^{i}=\frac{nx^{n+2}-(1+n)x^{n+1}+x}{(x-1)^2}\tag{2}$$ and set $x=2$ $$\sum\limits_{i=1}^{n}i2^{i}=n2^{n+2}-(1+n)2^{n+1}+2\tag{3}$$