This question got me thinking and confused on how to solve it. If $$\begin{align}k(x-a)+2x-z&=0\\k(y-a)+2y-z&=0 \\ k(z-a)-x-y+2z&=0\end{align}$$
Show that $$x = \frac{ak(k+3)}{k^2+4k+2}.$$
So far so good, I could only solve it simultaneously.
This question got me thinking and confused on how to solve it. If $$\begin{align}k(x-a)+2x-z&=0\\k(y-a)+2y-z&=0 \\ k(z-a)-x-y+2z&=0\end{align}$$
Show that $$x = \frac{ak(k+3)}{k^2+4k+2}.$$
So far so good, I could only solve it simultaneously.
Note that the system remains the same if you interchange $x$ and $y$. Therefore $x = y$ for any solution that is unique. This means that there are only two equations: $$ k(x-a) + 2x - z = 0 \\ k(z-a) - 2x + 2z = 0 $$ Solve the first equation for $z$, substitute into the second equation, and solve for $x$.
Straightforward, using Cramer’s rule, see https://en.wikipedia.org/wiki/Cramer%27s_rule#Explicit_formulas_for_small_systems: $$\begin{align} {}&\det\begin{pmatrix} 2+k&0&-1\\ 0&2+k &-1\\ -1&-1&2+k \end{pmatrix}\\ &\qquad=(2+k)^2\det\begin{pmatrix} 1&0&-1/(2+k)\\ 0&1 &-1/(2+k)\\ -1&-1&2+k \end{pmatrix}\\ &\qquad=(2+k)^2\det\begin{pmatrix} 1&0&-1/(2-k)\\ 0&1 &-1/(2+k)\\ 0&-1&2+k-1/(2+k) \end{pmatrix}\\ &\qquad=(2+k)^2\det\begin{pmatrix} 1&0&-1/(2-k)\\ 0&1 &-1/(2+k)\\ 0&0&2+k-2/(2+k) \end{pmatrix}\\ &\qquad=(2+k)^2(2+k-2/(2+k))\\ &\qquad=(k+2)(k^2+4k +2)=:D. \end{align}$$ Now $$\begin{align} \det\begin{pmatrix} ka&0&-1\\ ka &2+k&-1\\ ka &-1&2+k \end{pmatrix} &=ka\det\begin{pmatrix} 1&0&-1\\ 1&2+k&-1\\ 1&-1&2+k \end{pmatrix}\\ &=ka\det\begin{pmatrix} 1&0&0\\ 1&2+k&0\\ 1&-1&3+k \end{pmatrix}\\ &=ka(2+k)(3+k)=:D_x. \end{align} $$ Hence $x=D_x/D$ in case $k\notin\{-2,-2\pm\sqrt2\}$.