Finding $\displaystyle \int^{\pi}_{0}\cos^4(x+\sin 3x)dx$
Try: From $\displaystyle \cos^4(x)=(\cos^2(x))^2=\frac{1}{4}\bigg[1+\cos 2x\bigg]^2$
$$=\frac{1}{4}+\frac{1}{8}\bigg(1+\cos^2(4x)+2\cos 4x\bigg)+\frac{\cos 2x}{2}$$
$$=\frac{3}{8}+\frac{1}{16}+\frac{1}{16}\cos(8x)+\frac{1}{4}\cos(4x)+\frac{1}{2}\cos(2x)$$
So $$\cos^4(x+\sin 3x)=\frac{7}{16}+\frac{1}{16}\cos(8x+8\sin 3x)+\frac{1}{4}\cos(4x+4\sin 3x)+\frac{1}{2}\cos(2x+3\sin 3x)$$
How can i solve $$\int^{\pi}_{0}\sin(8x+8\sin 3x)dx$$
$$\int^{\pi}_{0}\sin(4x+4\sin 3x)dx$$ Type integrals
I have seems that it is not possible in elementry way
could some help me to solve it . thanks