A proof I'm looking at shows $\triangledown_x x^TA^TAx = 2A^TAx$.
I did Matlab symbolic calculation to verify this, but I found the converse. It should be $2x^TA^TA$.
$\frac{d}{dx}x^TA^TAx = \\ [ 2x_1A_{1,1}^2 + 2A_{1,2}x_2A_{1,1} + 2x_1A_{2,1}^2 + 2A_{2,2}x_2A_{2,1},\\ 2x_2A_{1,2}^2 + 2A_{1,1}x_1A_{1,2} + 2x_2A_{2,2}^2 + 2A_{2,1}x_1A_{2,2}]$
I ran jacobian(x'*A'Ax, x) for this one.
$2x^TA^TA=\\ [ 2x_1A_{1,1}^2 + 2A_{1,2}x_2A_{1,1} + 2x_1A_{2,1}^2 + 2A_{2,2}x_2A_{2,1}, \\2x_2A_{1,2}^2 + 2A_{1,1}x_1A_{1,2} + 2x_2A_{2,2}^2 + 2A_{2,1}x_1A_{2,2}]$
$2A^TAx = \\ [ 2x_1A_{1,1}^2 + 2A_{1,2}x_2A_{1,1} + 2x_1A_{2,1}^2 + 2A_{2,2}x_2A_{2,1};\\ 2x_2A_{1,2}^2 + 2A_{1,1}x_1A_{1,2} + 2x_2A_{2,2}^2 + 2A_{2,1}x_1A_{2,2}$
Am I missing something here?