In class we defined the Lebesgue integral for a nonnegative measurable function $f$ as $ \int_E fd\mu=sup\{\int_E\phi d\mu \mid0< \phi\ <f$ where $\phi$ are simple functions$ \}$. And then we defined that $f$ is Lebesgue integrable if its Lebesgue integral is finite. What bothers me about this definition is what about the "upper Lebesgue Intgrals" i.e What if we consider $inf\{\int_E\phi d\mu \mid0< f<\phi\ $ where $\phi$ are simple functions$ \}$ will this even be finite if the former is? are the two equal? I would expect that the Lebesgue Integrable functions would be those functions where the two definition of Lebesgue integral coincide and are finite.
Can anyone help me understand what is going on?
Thanks in advance