Finding $\displaystyle \int^{\frac{\pi}{2}}_{0}\ln(\sin x)\cdot \sin xdx$
What I try:-> Integration by parts
assuming $\displaystyle I = \int\ln(\sin x)\cdot \sin xdx = -\ln(\sin x)\cdot \cos x+\int\frac{\cos^2 x}{\sin x}dx$
$\displaystyle I = -\ln(\sin x)\cdot \cos x+\int\frac{1-\sin^2 x}{\sin x}dx$
$ = -\ln(\sin x)\cos x+\ln\bigg(\tan\frac{x}{2}\bigg)-\cos x$
$ \displaystyle \int^{\frac{\pi}{2}}_{0}\ln(\sin x)\cos xdx = \bigg[-\ln(\sin x)\cos x+\ln\bigg(\tan\frac{x}{2}\bigg)-\cos x\bigg]\bigg|^{\frac{\pi}{2}}_{0}=-\ln(0)+\ln(0)$
but answer is $\ln(2/e)$
could some explain me why I have got wrong answer,thanks
also explain me How I solve it using double integral