I have $$ e^{1+2 \pi i}= e^{1} e^{2 \pi i} = e,$$ then $$e=e^{1+2 \pi i} = ( e^{1+ 2 \pi i})^{1+2 \pi i} = e^{(1+2 \pi i) (1+2 \pi i)}= e^{1+4 \pi i - 4 \pi^2}= ee^{4 \pi i}e^{-4 \pi^2}= ee^{-4 \pi^2}.$$ Thus $ e^{-4 \pi^2} = 1$
Can anybody help me?
https://math.stackexchange.com/questions/2399675/two-contradictory-ways-to-calculate-e2-pi-ii
– Oct 15 '18 at 02:28