0

$$\lim\limits_{x\to 0} e^\frac{−1}{|x|}$$

I know that if $x$ goes to $0$, that $\frac{-1}{|x|}$ goes to $-\infty$ and thus, the limit goes to $0$.

But, is there a more mathematical way to explain it rather than with words?

rtybase
  • 16,907
  • Edited the formatting, want to make sure this is what you meant – WaveX Oct 14 '18 at 12:28
  • Maybe state it as a continuity property of a composition of $\frac{1}{|x|}$ and $e^x$. – Henno Brandsma Oct 14 '18 at 12:34
  • As a part of basic properties of $e^x$ one learns that $e^x\to\infty$ as $x\to\infty$. Your limit is an easy consequence of that property and the standard limit $\lim_{x\to\infty} (1/x)=0$. In essence what you have said in words in your post is the correct justification. – Paramanand Singh Oct 14 '18 at 21:01

2 Answers2

0

One way to proceed is via $$ e^{-x} \le \frac1{1+x}$$ which itself follows because $ 1+x \le e^x$ for all $x\ge 0$. Then

$$0\le e^{-1/|x|} \le \frac1{1+1/|x|} = \frac{|x|}{|x|+1} \le |x| $$ and $|x|\to 0$ as $x\to 0$, so we can conclude with the "squeeze rule".

Calvin Khor
  • 34,903
0

Use the definition. Take $\varepsilon \in (0 , \infty)$ and distinguish two cases:

  • if $\varepsilon \in [1 , \infty)$, then $\log \varepsilon \in [0 , \infty)$ and each $\delta \in (0 , \infty)$ is valid: for all $\varepsilon \in [1 , \infty)$, we have (take some $\delta \in (0 , \infty)$), $$ - \frac{1}{|x|} < \log \varepsilon \quad \Longrightarrow \quad e^{- \frac{1}{|x|}} < \varepsilon $$ for $x \in (- \delta , \delta) \setminus \{0\}$.
  • if $\varepsilon \in (0 , 1)$, then take $\delta = - \frac{1}{\log \varepsilon}$: for $x \in (- \delta , \delta) \setminus \{0\}$, we have $$ |x| < - \frac{1}{\log \varepsilon} \quad \Longrightarrow \quad - \frac{1}{|x|} < \log \varepsilon \quad \Longrightarrow \quad e^{- \frac{1}{|x|}} < \varepsilon\mbox{.} $$
joseabp91
  • 2,360